Regulation of human telomerase activity: repression by normal chromosome 3 abolishes nuclear telomerase reverse transcriptase transcripts but does not affect c-Myc activity.
نویسندگان
چکیده
Telomerase is required for the complete replication of chromosomal ends. In tumors, the human telomerase reverse transcriptase subunit (hTERT) is up-regulated, thereby removing a critical barrier for unlimited cell proliferation. To understand more about hTERT regulation, we measured hTERT RNA levels by quantitative reverse transcription (RT)-PCR. Telomerase-positive cell lines were found to contain between 0.2 and 6 molecules of spliced hTERT RNA per cell, whereas in telomerase-negative cells, the number of molecules was below the sensitivity of the assay (<0.004 molecules/cell). Intron-containing, immature hTERT RNA was observed only in nuclei of telomerase-positive cells, which suggests that hTERT RNA levels are transcriptionally regulated. Microcell transfer of a normal chromosome 3 into the human breast carcinoma cell line (21NT) abolishes telomerase activity and induces senescence. Endogenous hTERT transcripts were undetectable in the nuclei of 21NT-chromosome 3 hybrids, even in cells permanently expressing a transfected hTERT cDNA. However, chromosome 3 transfer did not affect the expression of green fluorescent protein reporter constructs driven by up to 7.4 kb of noncoding DNA flanking the 5' end of the hTERT gene. Because direct up-regulation of hTERT through c-Myc overexpression had previously been reported, we investigated whether chromosome 3 transfer affected c-Myc activity. An at least 30-fold reduction of immature intron-containing hTERT RNA was observed after the introduction of a normal chromosome 3, but expression levels of c-Myc, Mad1, and other c-Myc target genes were unchanged. Our results suggest that telomerase is regulated primarily at the level of hTERT transcription by complex mechanisms involving regulatory elements distant from the 5' flanking region, and that the putative hTERT repressor on chromosome 3 does not regulate the expression of hTERT through c-Myc or one of its coregulators.
منابع مشابه
Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC
Telomerase elongates telomeres and is crucial for maintaining genomic stability. While stem cells and cancer cells display high telomerase activity, normal somatic cells lack telomerase activity primarily due to transcriptional repression of telomerase reverse transcriptase (TERT), the catalytic component of telomerase. Transcription factor binding, chromatin status as well as epigenetic modifi...
متن کاملExpression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملDownstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression.
Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-po...
متن کاملTelomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. ...
متن کاملDifferential expression of full-length telomerase reverse transcriptase mRNA and telomerase activity between normal and malignant renal tissues.
Activation of telomerase, a key event during immortalization and malignant transformation, requires expression of the telomerase reverse transcriptase (hTERT). Consistently, lack of telomerase activity and hTERT expression occurs in most normal human somatic cells. However, it has been observed that both normal and cancerous renal tissues express hTERT whereas only the latter exhibits telomeras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 61 20 شماره
صفحات -
تاریخ انتشار 2001